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Abstract— spatial constraint consideration while retrieving 

and grounding the appropriate object is a complex task in 

text to scene generation. When the user describes the scene 

in the natural language, the system has to decipher the 

context of the user description and retrieve related 3D 

models. Natural language not always explicitly specifies all 

the constraints. The system has to understand the hidden 

implicit constraints. This work mainly concentrates on 

making the system learn all the implicit constraints and 

satisfy the user with the output generated for given input 

description. 

 

The system should learn the basic common sense 

knowledge using a Machine Learning algorithm called 

Long Short Term Memory (LSTM). This algorithm takes 

text corpus as input which contains all the user defined 

descriptions including the implicit constraints. It helps in 

training the model to predict the implicit constraints given 

a natural language description as input.  

I. INTRODUCTION  

Text to 3D scene generation system does the task of analyzing 

the input text and giving a 3D scene as output. This 3D scene 

involves the grounding of appropriate 3D models from the 

user input text description. The natural language text 

description does not include all the constraints. Few will be 

explicitly specified and rest has to be implicitly understood by 

the system.  This is the basic common sense knowledge that 

the system has to learn.  

 

    Lexical grounding is nothing but retrieving the 3D models 

and placing them in appropriate position. This work 

concentrates on the sub problem of lexical grounding. That is, 

identifying the implicit constraints. Finding solution to this 

sub problem is very important since it has major impact on 

quality of scene generation. It also affects the further stages 

which involve correctly arranging the retrieved 3D models. 

 

    The most basic approach to retrieve 3D models would be 

keyword search. But this approach fails to generalize the 

description well and does not consider the implicit constraints 

which are necessary, hence machine learning algorithm called 

Long Short Term Memory (LSTM) is used to make the system 

learn and identify the implicit constraints. 

 

    LSTM networks are special kind of RNN (Recurrent Neural 

Network) capable of learning long-term dependencies. 

Recollecting data for long period of time is their default 

behavior, not something they battle to learn. LSTMs help 

preserve the error that can be back propagated through time 

and layers. By maintaining a more constant error, they allow 

recurrent nets to continue to learn over many time steps (over 

1000), thereby opening a channel to link causes and effects 

remotely. 
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    E.g. : Consider an input ― cake is placed on the table‖. Now 

the model should identify what all models to retrieve. i.e. a 

cake, plate, table, chair 

 

 

Figure 1:  Implicit constraint [1] 

 

    This work has made use of ShapeNetSem database. 

ShapeNetSem is a dataset of 3D models which are highly 

annotated with physical attributes. ShapeNetSem is a smaller, 

more densely annotated subset of ShapeNet consisting of 

12,000 models spread over a broader set of 270 categories. 

 

II. PROBLEM FORMULATION 

A. Identifying the implicit constraints 

This work strives at implementing an effective methodology 

that helps the system to retrieve appropriate 3D models w.r.t. 

given input description. Taking the sub problem of lexical 

grounding into consideration, i.e. identifying the implicit 

constraints, we construct a machine learning model which 

does the task of predicting unspecified necessary objects. This 

work also takes into account the object count if specified.   

 

III. THE METHODOLOGY 

Artificial neural techniques like Deep learning are used to 

learn high dimensional, non-linear huge datasets, which is 

very complicated network structure with many hidden layers. 

Sequential layer is a stack of layers. We can add any number 

of layers using the add () function. The input shape has to be 

mentioned in the first layer. Other layers can do shape 

inference from the first layer. 

 

     Input to LSTM, has to be 3 dimensional, which is specified 

in the first hidden layer of the network. It is specified in the 

'input_shape' argument in the LSTM layer. So when fitting the 

model, or when making predictions, 3D array has to be passed. 

'input_shape' takes 3 arguments (samples, timesteps, 

features).None takes any positive integer as input. (Batch 

dimension is not included in this function) By default the 1st 

argument expects to pass 1 or more samples. One sequence 

indicates one sample. Batch can have many samples. Batch 

size is the first argument. 

 

    The size of the training text has to be known for defining 

the word embedding layer. The next layer is one hidden 

LSTM layer, followed by one dense output layer. The 

activation function is required because without it the output 

signal simply is a linear function. The linear function cannot 

learn much of the complex mappings between in the data. 

 

Without activation function, the model would just be a linear 

regression model. Now it can learn from complex data like 

images, audio and video. The activation function should be 

differentiable to perform the back propagation to calculate the 

error, i.e the loss and update the weights according to the 

extension of gradient descent algorithm, Adam optimizer. 
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    There is single learning rate for all weight updates and it 

does not change during training in stochastic gradient. In 

Adam optimizer, learning rate is maintained for each network 

weight.  Relu Activation function is used only for hidden 

layers. So for output layers, Softmax activation function is 

used, for a classification problem to calculate the probabilities 

for the classes. 

 

    Word embedding layer which takes the total size of the 

training text, 10 dimensional projection, where each word in 

the corpus is specified by a real valued vector of size 

10.input_length here, has the size of the sequence of 

maximum length. The vocabulary has a real valued vector for 

each word in the corpus, where each vector has a specified 

length.The input size is taken as length of the maximum vector 

from all the inputs sequences. 

 

    Using Tokenizer class, word encoding is done. Mapping is 

done between the words and integers using the available 

functions in Keras. Word_index is used to fetch the size of the 

vocabulary. Function to_categorical() turns the labels, i.e. y 

vector into one hot encoding labels, of number of classes as 

the size of the text corpus. Compile and fit the network on 

encoded text data. Compilation is done before training the 

model. Categorical cross entropy loss function shows the loss 

between two probability distributions. 

 

    To train the model, fit function is used. Models are trained 

on Numpy arrays of input data and labels in Keras. Function 

to generate sequences and reshape the input data. The model 

which is to be trained is ‗model‘, ‗tokenizer‘, to convert input 

text to integer sequences. Padding is done to specify the fixed 

length, with ‗max_length‘ argument. The probabilities of each 

word to the classes specified in Y array are predicted. This is a 

multi-classification problem where the numbers of labels are 

the number of words in Y array. The seed sentence is broken 

into words and it is searched in X array. When the match is 

found the break out of the for loop and append the 

corresponding Y label. List of predicted words is returned. 

 

    The model is trained with the help of AWS server for 400 

epoches. This is done by the fit function where we specify the 

number of epochs, X and Y. After the model is trained we 

save the .hdf5 file with the least loss. When the predictions are 

made this file is loaded to apply the updated weights and make 

predictions. Output of the generate function is written to a file.  

 

    The text is read and tokenized into words using nltk 

tokenizer called RegexpTokenizer. Convert the tokens into 

lowercase using lower ( ) function. Stop words are the 

unwanted words apart from nouns, adjectives which are not 

needed. They are removed using words () function from nltk 

corpus. Duplicate words are removed in the list.  

 

    To identify the words as nouns, adjectives and numbers 

POS tagging is done using default tagger of Treebank Corpus 

which is available in nltk. Also, to consider the Count of 

objects, in token ( ) function, logic is written to check if a 

number, which is tagged as ‗CD‘, is followed by a noun 

tagged as ‗NN‘. At the end of output of LSTM model and the 

preprocessing 2D array is created, of size number of nouns in 

the seed sentence X 2. The second column has the number of 

count of objects, specified in the seed sentence. 

 

 

    The resulting output is processed. That is the stopwords are 

removed. POS tagging is done in order to retrieve the nouns 

and numbers. The resulting objects are mapped with 

metadata.csv file obtained along with ShapeNetSem dataset to 

obtain the object Id. This file has the list of all 3D model tags 

along with their Id. The object ID, along with the set position 

is used is used he's used in blender script. The code for 

rendering the models in the blender is called using sub process 

call. 
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IV. RESILTS & DISCUSSIONS 

In this work we have mainly concentrated on retrieving 

implicit and explicit 3D models given a seed sentence as input. 

This work can also handle input cases where the user asks for 

specified number of objects. 

 

As the spatial constraints are not considered, the 3D 

models are grounded in random manner. It has not considered 

the size of objects, its position and the co-relation between the 

objects.   

 

Below are the scenes that are generated for the given input 

text. It is rated on the scale of 1 – 10 by human evaluation.  

Test 

Id 

Input Text Scene generated 

01 Cookies 

 

02 2 Chairs 

 

03 Book is on 

the table 

 

04 Luggage is 

on the bed 

 

Table 1: Result table consisting of input text, Generated scene 

and the human evaluated result 

CONCLUSIONS 

This work mainly focuses on getting appropriate 3D models 

when user inputs a seed sentence. In a natural language, not all 

constraints can be explicitly specified. Few of them should be 

understood using common sense knowledge.  

 

In this work we are training a LSTM model with text corpus. 

The text corpus contains user-defined descriptions of scenes. 

The description includes all the explicit and implicit 

constraints. The trained model takes a seed sentence as input 

and gives all the related sentences to it and the sentences, 

which comes next in sequence.  

 

This output is then pre-processed to get all the objects. By 

human judgment it is understood that the model is not accurate 

enough to produce all the implicit constraints. So, using 

Concept-Net which is a common sense reasoning semantic 

network which helps in this work to give the implicit 

constraints which the trained model couldn‘t output.  

 

After getting to know the output objects we now retrieve the 

object Ids from the metadata.csv file given by ShapeNetSem 

dataset. This file has also given the approximate location of 

objects. Knowing the object Ids and where it has to be placed, 

we can now get the 3D models and output them using Blender. 

This work handles the user input with number constraints. It 

generates right 3D models. Since the spatial constraint is not 

considered here. So the objects are placed in random 

dimensions.  

FUTURE DIRECTIONS 

The following features can be further added on to the current 

work. 

 Considering adjective occurring before noun. Eg : 

Wooden Chair 

 Considering the object size 

 Identifying the parent and child object. i.e. placing 

objects w.r.t. each other 

International Journal of Scientific & Engineering Research Volume 11, Issue 4, April-2020 
ISSN 2229-5518  

199

IJSER © 2020 
http://www.ijser.org 

IJSER



REFERENCES 

[1]  Angel Chang , Will Monroe , Manolis Savva,Christopher                                

Potts and Christopher D. Manning ―Text to 3D Scene 

Generation with Rich Lexical Grounding‖ Stanford 

University, Proceedings of the 53rd Annual Meeting of the 

Association for Computational Linguistics (ACL) and the 7th 

International Joint Conference on Natural Language 

Processing(IJCNLP), Held at Beijing, China, 26-31 July 2015, 

Volume 1,P15-1006 

 

[2] Angel Chang, Will Monroe, Manolis Savva, Christopher 

Potts and Christopher D. Manning ―Learning Spatial 

Knowledge for Text to 3D Scene Generation‖ .In Proceedings 

Of Empirical Methods in Natural Language  

Processing(EMNLP), held on 25-29 October 2014 in Doha, 

Qatar, pp 101 

[3]  Angel Chang, Manolis Savva, Christopher Potts and 

Christopher D. Manning ―Semantic Parsing for Text to 3D 

Scene Generation‖ Stanford University, Conference: 

Proceedings of the ACL 2014. 

 

 

 

 

 

 

 

 

 

 

International Journal of Scientific & Engineering Research Volume 11, Issue 4, April-2020 
ISSN 2229-5518  

200

IJSER © 2020 
http://www.ijser.org 

IJSER




