
Constraint Based Interior designing interface for

scene generation using text

Yashaswini S

Assistant Professor

Department of Computer Science and Engineering

Cambridge Institute of Technology

Bangalore, India

Shylaja S Sharath

Chairperson,

Department of Computer Science and Engineering

PES University

Bangalore, India

Abstract— spatial constraint consideration while retrieving

and grounding the appropriate object is a complex task in

text to scene generation. When the user describes the scene

in the natural language, the system has to decipher the

context of the user description and retrieve related 3D

models. Natural language not always explicitly specifies all

the constraints. The system has to understand the hidden

implicit constraints. This work mainly concentrates on

making the system learn all the implicit constraints and

satisfy the user with the output generated for given input

description.

The system should learn the basic common sense

knowledge using a Machine Learning algorithm called

Long Short Term Memory (LSTM). This algorithm takes

text corpus as input which contains all the user defined

descriptions including the implicit constraints. It helps in

training the model to predict the implicit constraints given

a natural language description as input.

I. INTRODUCTION

Text to 3D scene generation system does the task of analyzing

the input text and giving a 3D scene as output. This 3D scene

involves the grounding of appropriate 3D models from the

user input text description. The natural language text

description does not include all the constraints. Few will be

explicitly specified and rest has to be implicitly understood by

the system. This is the basic common sense knowledge that

the system has to learn.

 Lexical grounding is nothing but retrieving the 3D models

and placing them in appropriate position. This work

concentrates on the sub problem of lexical grounding. That is,

identifying the implicit constraints. Finding solution to this

sub problem is very important since it has major impact on

quality of scene generation. It also affects the further stages

which involve correctly arranging the retrieved 3D models.

 The most basic approach to retrieve 3D models would be

keyword search. But this approach fails to generalize the

description well and does not consider the implicit constraints

which are necessary, hence machine learning algorithm called

Long Short Term Memory (LSTM) is used to make the system

learn and identify the implicit constraints.

 LSTM networks are special kind of RNN (Recurrent Neural

Network) capable of learning long-term dependencies.

Recollecting data for long period of time is their default

behavior, not something they battle to learn. LSTMs help

preserve the error that can be back propagated through time

and layers. By maintaining a more constant error, they allow

recurrent nets to continue to learn over many time steps (over

1000), thereby opening a channel to link causes and effects

remotely.

International Journal of Scientific & Engineering Research Volume 11, Issue 4, April-2020
ISSN 2229-5518

196

IJSER © 2020
http://www.ijser.org

IJSER

 E.g. : Consider an input ― cake is placed on the table‖. Now

the model should identify what all models to retrieve. i.e. a

cake, plate, table, chair

Figure 1: Implicit constraint [1]

 This work has made use of ShapeNetSem database.

ShapeNetSem is a dataset of 3D models which are highly

annotated with physical attributes. ShapeNetSem is a smaller,

more densely annotated subset of ShapeNet consisting of

12,000 models spread over a broader set of 270 categories.

II. PROBLEM FORMULATION

A. Identifying the implicit constraints

This work strives at implementing an effective methodology

that helps the system to retrieve appropriate 3D models w.r.t.

given input description. Taking the sub problem of lexical

grounding into consideration, i.e. identifying the implicit

constraints, we construct a machine learning model which

does the task of predicting unspecified necessary objects. This

work also takes into account the object count if specified.

III. THE METHODOLOGY

Artificial neural techniques like Deep learning are used to

learn high dimensional, non-linear huge datasets, which is

very complicated network structure with many hidden layers.

Sequential layer is a stack of layers. We can add any number

of layers using the add () function. The input shape has to be

mentioned in the first layer. Other layers can do shape

inference from the first layer.

 Input to LSTM, has to be 3 dimensional, which is specified

in the first hidden layer of the network. It is specified in the

'input_shape' argument in the LSTM layer. So when fitting the

model, or when making predictions, 3D array has to be passed.

'input_shape' takes 3 arguments (samples, timesteps,

features).None takes any positive integer as input. (Batch

dimension is not included in this function) By default the 1st

argument expects to pass 1 or more samples. One sequence

indicates one sample. Batch can have many samples. Batch

size is the first argument.

 The size of the training text has to be known for defining

the word embedding layer. The next layer is one hidden

LSTM layer, followed by one dense output layer. The

activation function is required because without it the output

signal simply is a linear function. The linear function cannot

learn much of the complex mappings between in the data.

Without activation function, the model would just be a linear

regression model. Now it can learn from complex data like

images, audio and video. The activation function should be

differentiable to perform the back propagation to calculate the

error, i.e the loss and update the weights according to the

extension of gradient descent algorithm, Adam optimizer.

International Journal of Scientific & Engineering Research Volume 11, Issue 4, April-2020
ISSN 2229-5518

197

IJSER © 2020
http://www.ijser.org

IJSER

 There is single learning rate for all weight updates and it

does not change during training in stochastic gradient. In

Adam optimizer, learning rate is maintained for each network

weight. Relu Activation function is used only for hidden

layers. So for output layers, Softmax activation function is

used, for a classification problem to calculate the probabilities

for the classes.

 Word embedding layer which takes the total size of the

training text, 10 dimensional projection, where each word in

the corpus is specified by a real valued vector of size

10.input_length here, has the size of the sequence of

maximum length. The vocabulary has a real valued vector for

each word in the corpus, where each vector has a specified

length.The input size is taken as length of the maximum vector

from all the inputs sequences.

 Using Tokenizer class, word encoding is done. Mapping is

done between the words and integers using the available

functions in Keras. Word_index is used to fetch the size of the

vocabulary. Function to_categorical() turns the labels, i.e. y

vector into one hot encoding labels, of number of classes as

the size of the text corpus. Compile and fit the network on

encoded text data. Compilation is done before training the

model. Categorical cross entropy loss function shows the loss

between two probability distributions.

 To train the model, fit function is used. Models are trained

on Numpy arrays of input data and labels in Keras. Function

to generate sequences and reshape the input data. The model

which is to be trained is ‗model‘, ‗tokenizer‘, to convert input

text to integer sequences. Padding is done to specify the fixed

length, with ‗max_length‘ argument. The probabilities of each

word to the classes specified in Y array are predicted. This is a

multi-classification problem where the numbers of labels are

the number of words in Y array. The seed sentence is broken

into words and it is searched in X array. When the match is

found the break out of the for loop and append the

corresponding Y label. List of predicted words is returned.

 The model is trained with the help of AWS server for 400

epoches. This is done by the fit function where we specify the

number of epochs, X and Y. After the model is trained we

save the .hdf5 file with the least loss. When the predictions are

made this file is loaded to apply the updated weights and make

predictions. Output of the generate function is written to a file.

 The text is read and tokenized into words using nltk

tokenizer called RegexpTokenizer. Convert the tokens into

lowercase using lower () function. Stop words are the

unwanted words apart from nouns, adjectives which are not

needed. They are removed using words () function from nltk

corpus. Duplicate words are removed in the list.

 To identify the words as nouns, adjectives and numbers

POS tagging is done using default tagger of Treebank Corpus

which is available in nltk. Also, to consider the Count of

objects, in token () function, logic is written to check if a

number, which is tagged as ‗CD‘, is followed by a noun

tagged as ‗NN‘. At the end of output of LSTM model and the

preprocessing 2D array is created, of size number of nouns in

the seed sentence X 2. The second column has the number of

count of objects, specified in the seed sentence.

 The resulting output is processed. That is the stopwords are

removed. POS tagging is done in order to retrieve the nouns

and numbers. The resulting objects are mapped with

metadata.csv file obtained along with ShapeNetSem dataset to

obtain the object Id. This file has the list of all 3D model tags

along with their Id. The object ID, along with the set position

is used is used he's used in blender script. The code for

rendering the models in the blender is called using sub process

call.

International Journal of Scientific & Engineering Research Volume 11, Issue 4, April-2020
ISSN 2229-5518

198

IJSER © 2020
http://www.ijser.org

IJSER

IV. RESILTS & DISCUSSIONS

In this work we have mainly concentrated on retrieving

implicit and explicit 3D models given a seed sentence as input.

This work can also handle input cases where the user asks for

specified number of objects.

As the spatial constraints are not considered, the 3D

models are grounded in random manner. It has not considered

the size of objects, its position and the co-relation between the

objects.

Below are the scenes that are generated for the given input

text. It is rated on the scale of 1 – 10 by human evaluation.

Test

Id

Input Text Scene generated

01 Cookies

02 2 Chairs

03 Book is on

the table

04 Luggage is

on the bed

Table 1: Result table consisting of input text, Generated scene

and the human evaluated result

CONCLUSIONS

This work mainly focuses on getting appropriate 3D models

when user inputs a seed sentence. In a natural language, not all

constraints can be explicitly specified. Few of them should be

understood using common sense knowledge.

In this work we are training a LSTM model with text corpus.

The text corpus contains user-defined descriptions of scenes.

The description includes all the explicit and implicit

constraints. The trained model takes a seed sentence as input

and gives all the related sentences to it and the sentences,

which comes next in sequence.

This output is then pre-processed to get all the objects. By

human judgment it is understood that the model is not accurate

enough to produce all the implicit constraints. So, using

Concept-Net which is a common sense reasoning semantic

network which helps in this work to give the implicit

constraints which the trained model couldn‘t output.

After getting to know the output objects we now retrieve the

object Ids from the metadata.csv file given by ShapeNetSem

dataset. This file has also given the approximate location of

objects. Knowing the object Ids and where it has to be placed,

we can now get the 3D models and output them using Blender.

This work handles the user input with number constraints. It

generates right 3D models. Since the spatial constraint is not

considered here. So the objects are placed in random

dimensions.

FUTURE DIRECTIONS

The following features can be further added on to the current

work.

 Considering adjective occurring before noun. Eg :

Wooden Chair

 Considering the object size

 Identifying the parent and child object. i.e. placing

objects w.r.t. each other

International Journal of Scientific & Engineering Research Volume 11, Issue 4, April-2020
ISSN 2229-5518

199

IJSER © 2020
http://www.ijser.org

IJSER

REFERENCES

[1] Angel Chang , Will Monroe , Manolis Savva,Christopher

Potts and Christopher D. Manning ―Text to 3D Scene

Generation with Rich Lexical Grounding‖ Stanford

University, Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics (ACL) and the 7th

International Joint Conference on Natural Language

Processing(IJCNLP), Held at Beijing, China, 26-31 July 2015,

Volume 1,P15-1006

[2] Angel Chang, Will Monroe, Manolis Savva, Christopher

Potts and Christopher D. Manning ―Learning Spatial

Knowledge for Text to 3D Scene Generation‖ .In Proceedings

Of Empirical Methods in Natural Language

Processing(EMNLP), held on 25-29 October 2014 in Doha,

Qatar, pp 101

[3] Angel Chang, Manolis Savva, Christopher Potts and

Christopher D. Manning ―Semantic Parsing for Text to 3D

Scene Generation‖ Stanford University, Conference:

Proceedings of the ACL 2014.

International Journal of Scientific & Engineering Research Volume 11, Issue 4, April-2020
ISSN 2229-5518

200

IJSER © 2020
http://www.ijser.org

IJSER

